[B][/B][B]上述新的数学观的也导致了16和17世纪,尤其是在一些商业和工业中心,科学家和工匠之间存在密切合作,从而为数学活动的普及展开提供了前提条件。下面这些事件是这种趋势的最好例证。一位纽伦堡的铸铁匠请求数学家、牧师Johannes Werner将欧几里得几何翻译成德文,以便他的儿子学习,并提议每个专题都应该附上实际应用的例子。英国的数学家Leonard Digges、Thomas Harriot和John Dee等伟大的数学家对有发明创造的工匠极为尊重。英国数学家Robert Recorde为了便于不谙希腊文和拉丁文的工匠们阅读学习,开始用英文撰写他的数学著作。自1588年起,Thomas Hood在伦敦为水手、工匠和士兵公开讲授科学、数学和天文学。1598年,伦敦格雷沙姆学院建成,以此作为学者与技师的一个会面地点以及用拉丁文与英文讲授科学、数学及神学的地方,大名鼎鼎的数学家布里格斯等是这所学院的数学教授。
于是,近代数学在这种完全崭新的文化氛围中迈开了步伐。由于技工与学者相互合作、逻辑思辨与实验科学携手大大刺激了数学中新的观点、新的理论和方法的产生,这时,数学一方面从实验的自然科学中吸取了的灵感,激发了众多新学科的创造,如对数、三角学的形成,微积分的产生与分析学的发展都是建立在自然科学的研究的基础上的。另一方面,数学的成果也日益广泛的被应用到其他自然科学的研究中去。实际上,从开普勒、笛卡尔、伽利略、牛顿到十八世纪的拉普拉斯,他们在一般方法上或具体研究中都是以数学家的身份去探索自然的。依靠数学的指导,建立定量化的规律,从而导出了极有价值的科学成果。
由此看到,圣经宗教所蕴涵的思想,特别是宗教改革运动之后的新教思想无疑更有利于导致近代数学的产生和发展所需要的一种社会文化环境。在这种环境中,人们既能对物理世界所提出的问题发生兴趣,又有人愿意从抽象的观点去思考由各方面提出的问题所引起的概念,而不计其是否能谋取眼前的或实际的利益。而自然界是产生概念的温床,通过对这些概念本身进行研究得到新的抽象结论,然后反过来应用于自然,于是便获得关于自然的新的观点,对自然界有更丰富、更广泛、更强有力的理解,而这又会刺激产生出更深刻的数学成果。近代数学就是在这样一个思辨与现实的相互作用、循环往复的过程中成长起来。 三,宗教动机--近代数学研究的出发点 除了古希腊的数学观与基督教教义相结合而产生的数学观刺激了数学的创造和实践探索之外,它对近代数学的另一个重要影响是为近代数学的产生和发展提供了强大研究动力。"寻找大自然的数学规律是为了研究上帝的本性和行为,以及上帝安排宇宙的方案"是近代数学时期数学家们从事数学研究的强烈动机。这种宗教动机最清楚地体现在开普勒所说一段话中:"对外部世界进行研究的主要目的在于发现上帝赋予它的合理次序与和谐,而这些是上帝依数学语言透露给我们的"。开普勒、伽利略、帕斯卡、笛卡儿、牛顿以及同时代的莱布尼茨等近代科学和数学的开创者们都视科学为一种宗教使命,他们认为科学家有义务去肩负之。"整个人类的首要追求目标应该是理解和发展上帝所创造的奇迹,这也是上帝赐给人类地球这个帝国的原因。"在这种热烈的宗教动机的驱使下,他们证明了自然界的一些现象与数学定律相吻合。由此使他们更加深信上帝不仅创造了世界,而且其创造与数学思维相一致。于是对于这种美妙的吻合怀着一种难以置信的欣喜之情,1619年开普勒在他的《世界的和谐》一书中表达了他对上帝的不尽的赞颂:"我感谢你,上帝,我们的创造者,你使我看到你所创造的杰作的美,我赞颂经你之手所创造的作品。看,我已经完成了我被指派的任务;并从你所赋予我的智慧中获得了乐趣。我将尽力在我的智力所能达到的极限的程度上,向阅读这个证明的人公开赞扬这项工作的荣耀。"[4]
伟大的数学家、物理学家牛顿的科学工作最明显体现了寻求上帝设计自然界的秘密的宗教动机。牛顿的光辉业绩呈现给人类一个崭新的世界秩序和一个包括了石头下落、海洋潮汐、行星及其卫星运动等宏大现象的宇宙图景。牛顿的规划使世人折服:自然界是依数学设计的,自然界的真正定律是数学。牛顿之所以提倡他的自然哲学的数学原理,而且确信数学是他所描述的现象的真正解释,其基础也是与他那个时代的所有数学家和科学家同样的信念:上帝创造的世界与数学原理吻合。牛顿多次表明对上帝的信仰是他进行数学和科学研究的真正动力。他认为科学也是崇拜上帝的一种形式,科学将揭开上帝辉煌设计的秘密。他为自己的工作揭示了无所不在的上帝的秘密而倍感欣慰。事实上,牛顿重视宗教远胜于重视数学与科学,因为后者只不过是展示上帝对宇宙的设计而已,牛顿把他的后半生全部献给了神学。
对于上帝依数学设计自然界的坚信在十八世纪最伟大的数学家欧拉那里达到了高峰。他不仅用最大最小原理证明上帝比16、17世纪的人们所称颂的更为英明,而且他还确信上帝赋予人类的使命是运用人类自身的才能去理解他的法则,自然之书已经打开在人们的面前,但是它是上帝用人们一时半会不能理解的语言写成的,只有用毅力、热爱、坚忍和钻研才能读懂,这种语言便是数学。正是这种强烈的宗教使命感使欧拉把自己的一生奉献给了数学与科学,直到生命的最后一刻。
伴随着欧拉虔诚地进行数学研究的同时,在欧洲,另一场影响深远的运动--启蒙运动也在如火如荼地的展开,这场以宏扬"理性"为宗旨的思想运动的一个直接结果是科学与上帝开始出现的分离倾向。有个著名的故事说,拉普拉斯把他的《天体力学》呈现给拿破仑时,后者说:"你写的这本关于宇宙系统的书,却根本没有提到它的创造者"。拉普拉斯回答说:"陛下,我不需要这样的假设"。那么,宗教信仰的衰退是不是意味着探讨上帝的宇宙的数学设计这一动力的消失呢?事实证明这种动力并未消失,它仍然是近代数学发展的主要精神动力和创造源泉。其实,从更深层的意义上来审视启蒙运动并不能单纯地把它看作是一个反对宗教的一场运动,启蒙运动实际上是基督教文化在成熟时期所进行的自我反思和自我批评,启蒙时期的思想家们所用的思想武器也仍然是基督教文化锻造出来的,没有基督教就不会有启蒙运动,基督教文化是启蒙运动展开和发展的土壤。的确,即使像狄德罗、拉普拉斯这样激烈否定上帝存在的数学家也在他们的思想和实践中承袭了对于"上帝依照数学设计了宇宙"的信仰。例如,[5]拉普拉斯需要有一个"无限的智慧者"的假设去澄清他的概率思想以及解释他为什么把概率置于人类思想中一个如此重要的地位的缘由。机会对于拉普拉斯来说并不是不可化约的随机,而是一大群独立事件的相互交错和相互作用这样一个图式的偶然的结果。如果自然界的所有事件能够同时被感知到,并且如果我们的演算技术足够先进的话,那么我们将不比无限的智慧者更需要概率。但是有限的人类是不可能达到万能的境界的,这样概率本质上是对人类谬误的水平的一种估计,概率之应用于自然界也只是在一定的知识水平上的预测,而它的本质恰恰是人们可怜的无知。
十九世纪的数学家们仍被这样的信念所驱使:他们就是神派来揭示上帝的意图的。高斯、柯西、傅立叶、康托等数学巨人们仍然沿着先人铺设的道路前进,他们加速寻求自然界的数学定律,创造了更为神奇的数学领域,并把它们应用到对自然的进一步探索之中。甚至到二十世纪,许多数学家和科学家,如魏尔、爱尔密特、爱因斯坦、怀特海等在解释数学在现实、在科学、在一切人类事务中为何如此有效时仍然认为,这种现象很难诉诸理性,而只能诉诸于自然的数学设计这一信念。时至今日,当人们广泛接受数学是"研究秩序和模式的科学"这一定义时,也许并没有意识到这样一个事实,尽管几乎所有的知识都已世俗化,然而,数学这门学科的基础动力仍然来自于"自然界的数学设计"这一宗教的形而上学的基础。
总之,对于近代数学时期数学家的研究动机的评价,威廉.詹姆斯[3]在《实用主义》一书中给出了精确的概括:"当最初数学的、逻辑的和自然的统一体、最初的定律被发现时,它们的清晰、美妙和简洁深深地吸引了人们,使众人相信似乎它们已成功地读出了万能之主的真正思想。上帝的心智发出轰鸣,作为对演绎法的回声,他也陷入了对圆锥曲线、平方、方根和比例的沉思,像欧几里得那样进行几何研究。他为行星运动确立了开普勒定律,他使落体的速度与时间成比例地增长。他还创造了正弦定律,使光在折射时遵循。…上帝构想出一切物体的原型,设计出它们的变体,而当我们重新发现了其中任何一个神奇创作时,也就是说我们理解了他的原始本意。"
综上所述,我们看到近代数学的产生不仅仅是古希腊数学的成长壮大,而且也受益于基督教文化传统的滋润与培育,由此培养起为荣耀上帝而通过理性与实验方法去探索自然和自然法则的思想,从而促进了现代数学思想的形成。荷兰科学史学家霍伊卡曾说:"倘若我们将科学喻为人体的话,其肉体组成部分是希腊人的遗产,而促进其成长的维他命和荷尔蒙是《圣经》的因素"。"科学更多地是某种宗教观念的结果,而不是其原因"[9]。实际上,基督教在近代数学兴起过程中所起的作用并不比上述比喻弱,除了本文中所探讨的基督教为近代数学的研究提供了强大的动力,以及宗教思维刺激了近代数学的某些特征的出现和实践探索之外,近代数学与基督教之间还有着其他方面千丝万缕的联系和影响,如近代数学的高度抽象性和广泛的应用性等特征的产生、近代数学教育的形成、近代数学向不同文化地区的传播,等等。当然应当指出,基督教对近代数学的影响未必都是正面的。但是,在近代数学兴起的时代,基督教是当时欧洲生活中最强大的力量,人们对上帝的看法影响了他们的数学观,而这种数学观又必然影响了他们探究数学的动机和方法,进而影响到近代数学的进程与面貌,这一点是毫无疑问的。 [/B]
|